Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Digit Health ; 4: 789980, 2022.
Article in English | MEDLINE | ID: covidwho-2290804

ABSTRACT

Several machine learning-based COVID-19 classifiers exploiting vocal biomarkers of COVID-19 has been proposed recently as digital mass testing methods. Although these classifiers have shown strong performances on the datasets on which they are trained, their methodological adaptation to new datasets with different modalities has not been explored. We report on cross-running the modified version of recent COVID-19 Identification ResNet (CIdeR) on the two Interspeech 2021 COVID-19 diagnosis from cough and speech audio challenges: ComParE and DiCOVA. CIdeR is an end-to-end deep learning neural network originally designed to classify whether an individual is COVID-19-positive or COVID-19-negative based on coughing and breathing audio recordings from a published crowdsourced dataset. In the current study, we demonstrate the potential of CIdeR at binary COVID-19 diagnosis from both the COVID-19 Cough and Speech Sub-Challenges of INTERSPEECH 2021, ComParE and DiCOVA. CIdeR achieves significant improvements over several baselines. We also present the results of the cross dataset experiments with CIdeR that show the limitations of using the current COVID-19 datasets jointly to build a collective COVID-19 classifier.

2.
Front Digit Health ; 5: 1058163, 2023.
Article in English | MEDLINE | ID: covidwho-2255581

ABSTRACT

The COVID-19 pandemic has caused massive humanitarian and economic damage. Teams of scientists from a broad range of disciplines have searched for methods to help governments and communities combat the disease. One avenue from the machine learning field which has been explored is the prospect of a digital mass test which can detect COVID-19 from infected individuals' respiratory sounds. We present a summary of the results from the INTERSPEECH 2021 Computational Paralinguistics Challenges: COVID-19 Cough, (CCS) and COVID-19 Speech, (CSS).

3.
Frontiers in digital health ; 4, 2022.
Article in English | EuropePMC | ID: covidwho-1957746

ABSTRACT

Several machine learning-based COVID-19 classifiers exploiting vocal biomarkers of COVID-19 has been proposed recently as digital mass testing methods. Although these classifiers have shown strong performances on the datasets on which they are trained, their methodological adaptation to new datasets with different modalities has not been explored. We report on cross-running the modified version of recent COVID-19 Identification ResNet (CIdeR) on the two Interspeech 2021 COVID-19 diagnosis from cough and speech audio challenges: ComParE and DiCOVA. CIdeR is an end-to-end deep learning neural network originally designed to classify whether an individual is COVID-19-positive or COVID-19-negative based on coughing and breathing audio recordings from a published crowdsourced dataset. In the current study, we demonstrate the potential of CIdeR at binary COVID-19 diagnosis from both the COVID-19 Cough and Speech Sub-Challenges of INTERSPEECH 2021, ComParE and DiCOVA. CIdeR achieves significant improvements over several baselines. We also present the results of the cross dataset experiments with CIdeR that show the limitations of using the current COVID-19 datasets jointly to build a collective COVID-19 classifier.

4.
BMJ Innov ; 7(2): 356-362, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1206033

ABSTRACT

BACKGROUND: Since the emergence of COVID-19 in December 2019, multidisciplinary research teams have wrestled with how best to control the pandemic in light of its considerable physical, psychological and economic damage. Mass testing has been advocated as a potential remedy; however, mass testing using physical tests is a costly and hard-to-scale solution. METHODS: This study demonstrates the feasibility of an alternative form of COVID-19 detection, harnessing digital technology through the use of audio biomarkers and deep learning. Specifically, we show that a deep neural network based model can be trained to detect symptomatic and asymptomatic COVID-19 cases using breath and cough audio recordings. RESULTS: Our model, a custom convolutional neural network, demonstrates strong empirical performance on a data set consisting of 355 crowdsourced participants, achieving an area under the curve of the receiver operating characteristics of 0.846 on the task of COVID-19 classification. CONCLUSION: This study offers a proof of concept for diagnosing COVID-19 using cough and breath audio signals and motivates a comprehensive follow-up research study on a wider data sample, given the evident advantages of a low-cost, highly scalable digital COVID-19 diagnostic tool.

SELECTION OF CITATIONS
SEARCH DETAIL